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Abstract 

We describe an approach to the computational modelling of human systems physiology. The HOM 

model is a piece of software incorporating systems of equations and variables with a graphical 

interface. The physiology design is object-oriented and extensible, and allows calculation at 

variable speeds. The equations aim to be general in scope and robust. The interface is interactive, 

and allows on-the-fly modification of model parameters. Due to its novel structure and mode of 

operation, the model may be useful in teaching, research and practice of both physiology and 

medicine. We discuss several ways in which such models might increase our understanding, and 

propose an ongoing process of extension and refinement. 
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A: Introduction: Current approaches to modelling 

The last 20 years have seen rapid increases in computer ownership, processing speed, memory, bus 

width, and advances in languages. Computational modelling of human physiology is one of the 

broadest and fastest developing areas in applied physiology, however by and large these computing 

improvements have not fully been exploited by physiology models. The goal of modelling is to 

characterise the body’s dynamic processes in a way that will not only aid the teaching and study of 

normal physiology, but also the investigation of disease processes and treatments. These goals to 

some extent parallel the developments in the human genome project over the last 20 years, but are 

in some ways more challenging (Kohl, 2000). The ‘physiome’, as the name suggests, aims to 

describe the building-block elements of physiological systems and integrate their properties. As 

described by Kohl, establishing this information base may have an impact on drug and device 

development, teaching, acute decision making, long-term healthcare development, the balance 

between standardisation and patient-specific treatment strategies. A large amount of data has been 

collected for isolated systems; the more isolated and restricted the system, the more detailed and 

accurate is the characterisation that can be modelled.  

Physiology 

Several computational models of individual organ systems have been described. Our model 

integrates key features and variables from several models, but the equations and constants used are 

independently derived. Our description of the cardiovascular system is similar in character to the 

original Guyton model (Circ Res 35:2:159, 1974), and incorporates autonomic feedback similarly to 

Smith et al. (Comp Meth Prog Biomed 86:153, 2007). The respiratory components have similarities 

to the Olszowka and Farhi (Resp Physiol 4:270, 1968) model, with tidal breathing and respiratory 

control mechanisms similar to Topor et al. (Annals Biomed Eng 32:11:1530, 2004). These models 

make accurate predictions of the behaviour of systems in several experimental conditions. A major 

advantage of Topor’s model is its state-dependent architecture, which we adopt throughout. In 

addition we incorporate a multi-compartment fluid and electrolyte model (mathematically very 

similar to the descriptions of Holz & Fahr, 2001), and simplified models of renal filtration and 

absorption, gut absorption, exercise, temperature, and sugar metabolism. 

 

Several smaller scale physiological models underlie many anaesthetic simulators; for a review see 

van Meurs, Good, & Lampotang. Some of the underlying physiological principles are based on the 

Beneken & Rideout (1968) mathematical formulations of cardiopulmonary function and 

compartment models. 
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Variables 

The standard approach is to take a physiological subsystem, and store numerical variables that 

correspond to the empirically measurable parameters.  

A system of simple equations is then implemented, by which the future state of the model can be 

calculated. In addition, several non-directly-measurable parameters may be chosen, with suitable 

dimensions, which are used to connect the measurables. These ‘hidden state’ variables must be 

carefully selected, and we must clearly state the assumptions behind their dependencies. Unit-wise, 

variables can be further subdivided into instantaneous quantities (often directly measurable) and 

rates of change (usually evidenced by measuring the quantities over time). 

 

Constants are necessary in any model, even if only as initial values. Constants can be categorised as 

either physical constants, that generally represent the choice of units, or physiological constants, 

which are properties specific to the organism in question. 

Due to the large range of magnitudes required, variables are generally in floating-point 

representation. Precision can be an important factor in performance particularly because of the 

iterative, nonlinear and unstable nature of the system being modelled. In fact we find that 16-bit 

precision can produce significantly different results from 32-bit precision if larger time-steps are 

used. 

Equations 

Equations are implemented by setting the value of a variable to the result of an expression, which is 

obtained by performing arithmetical operations. The operations can constitute of addition, 

multiplication and exponentiation of the values of other variables. Due to the nature of computers, 

they operate at discrete time intervals. As a consequence, in the general case it is helpful for as 

many variables as possible to be represented as rates. This obviates the integration steps (additions 

on successive time intervals) that are required in time-dependent processes. There is then a natural 

division between the temporal equations (usually first-order partial differential equations) and 

simple linear equations of state. This distinction becomes apparent when implementing a non-

constant time slice. 

 

Like variables, equations can also be categorised into those that are properties of essentially 

physical systems, and those specific to the organism. Here physical systems include, for example*, 

loss of energy from the skin by sweating, where the rate of sweating is assumed to be equal to the 

rate of evaporation, and the latent heat is assumed to be removed from the surface of the skin. Here, 

physical constants would signify the physical properties of water, and the choice to represent skin 
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temperature in degrees. The physiological system might comprise the mechanisms of sweat 

production. The nervous responses controlling the sweating rate can be considered as distinct, as 

they are generally negative feedback systems that have qualitatively different effects than the 

physiological processes they control (Figure 1). 

 

Gain-based plant-and-controller design has previously been successfully used as a simple but stable 

model of many processes. In these models, negative feedback around an equilibrium value provides 

a stable base on which other perturbations can be added or subtracted. The perturbations provided 

can be ‘external’, for example, a change in air pressure; but they can also be internal, given by other 

controllers. A common scenario is that several controllers collaboratively determine a single 

variable’s value. For example* stroke volume is controlled by the sympathetic system, but is 

influenced directly by filling pressure, which is influenced by several other controllers such as 

blood volume and the renin-angiotensin axis. Any system in which two controllers are coupled in 

this way by intermediate variables can exhibit three difficult problems: periodic oscillatory 

behaviour, unpredictable variability, or simple but physiologically unexpected responses.  

� Periodic behaviour is normally induced when a controlled variable is far from its set-point. 

This is because the forces that keep it far from the set-point are of a greater magnitude, and 

increase susceptibility to resonance.  Oscillations that are not found in vivo can be cured by 

adding appropriate damping terms, or low-pass filtering. 

� Unpredictable variability is indeed a common feature of real organisms; however chaotic 

behaviour in computer models is rarely accurate or usefully predictive, and in certain 

experimental situations it is useful to remove these effects. Cleaner physiological responses 

can sometimes be produced by increasing the gain in negative feedback loops, using finer 

time slices, and minimising nonlinearities in the equations. 

� Simple but physiologically unexpected responses usually reflect an oversight in the design 

of a model. These are often the most interesting and difficult to pinpoint errors, driving us to 

enquire exactly why the model deviates from reality. I shall illustrate this below under 

‘Incorrect predictions’ and ‘Explaining Physiology’. 

 

In terms of variables and equations, much of the work still to be done lies in uniting disparate 

models, each of which deals with a subset of all possible variables. Each model may choose a 

different representation of a variable for its own convenience, and each has its own set of hidden 

unmeasurable variables. 
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Time 

As mentioned, we generally we choose to represent quantities in a way such that the variation we 

are interested in lies within a manageable range. For example*, we might choose to store a local 

concentration gradient of calcium ions in a different format than storing total bone calcium content 

– leaving the differences to be dealt with in the conversion process.  

Time values also vary over a huge range of magnitudes. Unlike variable values however, it is often 

necessary to represent time values with great precision even when dealing with long periods. That 

is, there are situations where we might be interested in both the sub-second variations and the 

monthly variations in the same variable. Most models that have been implemented so far use their 

own fixed relative representation of time intervals, at a scale that is suited to the process being 

studied.  

 

Models in teaching physiology 

Computer models of several simple scenarios have previously been devised for teaching 

physiology, and form a natural development from the use of equivalent circuits as analogues of 

physiological systems. Many authors have commented that computer simulations have improved 

students’ understanding of physiology (Kofranek et al., 2001). It has also been noted that computer 

simulations reduce the numbers of animals used in undergraduate physiology teaching (Dewhurst 

1995). Individual subsystems have been modelled in some detail; Fenton et al (2002) developed 

detailed interactive real-time Java models of cardiac electrical activity. Less detailed models have 

also shown to be useful; Chauvet et al. (1999) developed several smaller scale interactive programs 

that aid the teaching of individual subsets of equations, in an attractive way that allows replication 

of key experiments in silico. Kootsey et al. (2001) have also developed a set of general physiology 

Java applets that simulate individual systems in an interactive manner.  

However these models may make it hard to get a feel for how systems interact in real life. Global 

physiology models help students to translate the principles of isolated systems into the complex 

interactions seen in vivo, and those involved in making medical decisions. This has motivated 

Kofranek et al. (2003) to build a monolithic formulation that incorporates 39 differential equations, 

89 inputs and 179 output variables. This model has greater power and scope, and gives a far more 

realistic picture of the multifactorial nature of physiological responses. Large numbers of variables, 

however, can be daunting for students, and it is wise to keep them clearly organised.  

By teaching initially with highly pared down simplistic models with few variables, and later 

increasing the number of variables, an understanding of the various levels of control can be 

achieved. Another advantage of graded levels of simulation is to cater for students at different levels 
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of understanding. Advanced students, for example, might benefit from being able to see a larger set 

of variables. 

 

B: Implementation: Our choices for modelling 

Our Goals 

We aim to construct a model that harnesses modern advances in microcomputers and programming 

in an interactive, real-time, graphical and modifiable environment. The physiology itself intends to 

be broad in scope, stable under noise, but simple enough that users can intuitively understand the 

variables (See Table 1). 

We have chosen to begin modelling with simple equations that generalise easily. We aim to model 

as many diverse potential physiological scenarios as possible. With this in mind, the equations must 

be robust over any possible scale of value, with appropriate error-checking. With only a few 

variables, there is still huge potential for unforeseen scenarios, and as more variables are added, 

these possibilities grow at least exponentially. Therefore the equations must also aim to be robust 

over interpolation, i.e. small changes in a value generally yield small changes in other model 

variables. 

The features of robustness would include the following:  

1) no signs of sensitive dependence on initial conditions except where this is physiologically 

expected 

2) making sensible predictions for previously untested combinations of values 

3) with an appropriate initial state, stability of values over long periods of time 

4) consistent predictions when the equations are implemented with different degrees of 

temporal accuracy. 

 

***e.g. example of robustness? 

 

Immutable versus mutable variables 

Many variables’ values depend on other variables, and sometimes the dependence is instantaneous. 

That is to say, some variables are fully determined by the value of other variables at any instant. An 

example* of this situation might be the atmospheric partial pressure of oxygen, which is precisely 

dependent on the product of percentage of oxygen and atmospheric pressure. In this situation, to 

alter the value of this variable directly would be ambiguous. Thus there are many variables that it 

does not make sense to set directly, and this is reflected in the variable design.  
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Environment versus body variables 

Most variable values can be thought of as properties of the organism itself, or properties of its 

environment. This distinction is useful in that environmental variables are usually modifiable by an 

experimenter, whereas physiological ‘body’ variables are somewhat harder to modify. Also, 

environmental variables are not affected directly by controllers (although they might be indirectly 

affected by a plant). By default, they might remain constant. 

Body variables can be further divided into constants and variables, but it is not obvious how the 

constants here might be manipulated in vivo; altering them should be permitted, but is conceptually 

different from environmental variables. Body constants often represent physical or chemical 

constraints, and some change with demographics.  Examples include some set-points of controlled 

variables (e.g. baseline heart rate), and fixed volumes (such as respiratory dead space, or maximum 

stomach capacity). 

Object-orientated design 

In order to represent the above distinctions, we have adopted an object-oriented programming 

design. Object-oriented programming was developed in the 1980s to simplify the large number of 

ways of representing information. The idea is that each representation of information is bundled 

along with a set of operations acting on that information. This helps to smooth the edge between 

data and program, or rather, facilitates the re-use of data and code. In short, the building blocks of 

programs are classes, and the building blocks of data are objects; classes are the templates for 

objects, and objects are the concrete instances of classes. 

By using an object-oriented architecture we hope that 1) our knowledge of similarities of process in 

many parts of the model could be captured and incorporated into the class structure, and 2) by 

creating a set of physiological building blocks, the class structure would itself suggest further and 

more elegant representations of physiological processes. 

 

The project includes over 600 variables, but has the potential to contain thousands. The object-

oriented architecture directly results in a division of variables into uniquely named and generic 

(unnamed) variables. This is because variables can be generated automatically using the class 

templates – for example*, all physiological solutions have potassium concentration. If CSF is a 

solution, then a variable for CSF potassium concentration will be created. Because the current set of 

equations only need to refer to this value indirectly (via operations on CSF as a whole), it has not 

been assigned a unique name. Because a plethora of solutions could be created in different contexts, 

it is enough to refer to these values by reference to their container object (e.g. CSF). Other 
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variables, such as urinary potassium, have been assigned unique names as a convenience, but can 

still be referred to via their container. 

 

Another direct consequence worth pointing out is that variables are sometimes created dynamically, 

during the simulation. This is of obvious benefit when modelling an unusual situation, or giving a 

drug. In this case there are many possible drugs, making it uneconomical to have pre-existing 

variables for each unused drug.  

 

Organ-centric object design: 

The natural way to organise an object-oriented system of physiology is system-wise, with each 

organ system consisting of hidden (internal) and visible (externally viewable and modifiable) 

variables, plus the program that manipulates the hidden variables in such a way as to produce a 

result in the visible variables. Should many systems need to interact with each other, they must only 

do so at their ‘interfaces’ – i.e. using the visible variables. In other words, each data value should 

‘belong’ to a particular section of program, or vice versa. For example*, in the kidney, 

concentrations at various points in a nephron are internal to the kidney, in that they cannot directly 

influence any other organ system. 

Designing an object-oriented system becomes tricky when large amounts of information are shared 

between large amounts of code. In the human body in particular, each organ system seems to 

interact with every other, and variables that might be considered intrinsic to the cardiovascular 

system are often frequently used by other organ systems.  

A second glance shows us that interfaces between organs can, in fact, be simplified. The most 

common interface is the blood, which is essentially data shared between all the organs. The 

important information in blood includes ion and hormone concentrations, gas pressures, 

temperature; any organ might alter these. Additionally every organs need to know arterial and 

venous hydrostatic pressures. A closer look reveals that all organs have access to and from the 

central nervous system; however, this medium might not be best modelled this way – see below 

under “Anatomical versus Physiological Models”. 

 

Finally, this method places important constraints on which variables any process can access; this 

can help to ensure a model maps more accurately onto real processes – see below under “Levels of 

Modelling Detail”. We feel that the object-oriented approach significantly eases the understanding 

and assembly of physiological models. 

 

The core classes include: 
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� Organs, which each have a vascular resistance that determines blood flow, and a set of 

system-specific variables with the program to manipulate them. 

� Containers, which are the elements of the compartment model. Each contains a volume plus 

concentrations of the simple electrolytes. The class includes a set of operations on 

containers, such as addition and withdrawal.  

� Variables, which encapsulate a value and its units. Named variables also store the name, 

normal range, initial value, and whether the variable’s value can be set. Each variable may 

belong to an organ or a container. 

� Controllers, which are short pieces of code that modify a variable’s value in a time-

dependent manner, based on perturbations in other variables. 

Timing and Threading 

The goal of the timing module is to allow arbitrary time compression for modelling a single set of 

processes. That is, each equation must be implemented to run with an arbitrary time slice. A given 

amount of ‘body-time’ elapses between executions of any one equation. Depending on the computer 

speed and threading, an equation can be invoked every 10ms. The model might be running in real 

time mode, meaning the equation calculates what its variables values would be after 10 ms; or the 

model might be running in compressed time, such as ‘1 hour per second’, meaning after 10ms the 

equation calculates what its variables values would be after 36000 ms. 

 

Not all simulated processes need to operate at the same temporal resolution. For example*, the rate 

at which heat is exchanged between blood and skin will not need as frequent computation as, say, 

the increase in alveolar CO2 concentration during breath-holding. Depending on the required 

accuracy, heat could be calculated every 10 minutes of body-time, and CO2 concentration every 

second. This immediately suggests a multi-threaded approach, with each set of equations being 

aware of how accurate they need to be. The advantages of this include allocation of processing 

power to the tasks that require it, and the possibility of distribution in multi-processor architectures. 

 

Our initial approach was that each individual physiological subsystem ran its group of equations in 

a single thread, with a pre-specified weighting. When a subsystem became active, it locked the 

physiological data it required (blocking other subsystems, but preventing concurrent modifications) 

– which includes common elements such as the blood.  

However, as the model grew in the number of shared variables, there were several problems with 

this approach. Firstly, because of stringent specifications as to which variables each set of equations 

could access, the program became difficult to maintain, modify and extend. Secondly, the time cost 
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of locking and unlocking variables increased nonlinearly with the number of equations, because 

many equations required access to more than 2 variables. Thirdly, we encountered unanticipated 

oscillatory behaviour in several situations, which were in fact due to irregularities in our operating 

system’s threading model, and its tendency to bunch together several calls within a single thread. 

This latter difficulty could be surmounted if a more evenly distributed threading architecture is 

used, or if we ensured the priorities of our threads were adhered to on smaller timescales. 

These problems led to abandoning the multithreaded approach, and adopting a traditional single 

execution cycle. This retains a reasonable computation speed and increases predictability of results. 

Due to the initial design, it should be easily possible to reintroduce threading at a later stage. 

 

We intend to capture qualitative differences in behaviour over different timescales. One issue is 

that, for the heart and lung, longer intervals between cycles would result in different phases of the 

cardiac/respiratory cycle on each calculation. This would introduce much unnecessary noise into the 

equations, and so when longer time-slices are used, all calculations are performed for zero-phase of 

these cycles. (Note that this approximation is only needed because of processor speed limitations.) 

Randomness 

Testing a model requires introduction of new values each time the model is run. With a highly 

general model, it makes some sense for this novelty to be integral to the model, rather than 

externally provided. To this end, minor random perturbations are introduced at a level that mimics 

organisms: in decision-making. When running in autonomous mode, decisions to ingest food and 

drink, sleep and wake, and perform exercise are made using pseudorandom numbers. The obvious 

disadvantage of this mode is that results are not necessarily replicable. Indeed, replicability despite 

noise is a good measure of how robust (robustly right or wrong) a particular prediction of the model 

is. 

Certainly some experimental situations are best with such factors under full control. When 

modelling disease processes, though, it can be helpful to study models both with and without 

random perturbations. A further development will be direct addition of noise to specific variables’ 

values, with controllable correlated noise models. 

Model specifications 

The model is written in Java and is distributed as an executable 1.5MB Jar file or a web applet. It 

runs on any computer with Java VM 1.4 or higher. Approximately half of the program is graphical 

interface, and half is physiology. 
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Currently the model incorporates 764 variables, of which 252 are individually named. 64-bit signed 

floating point numbers are used. They are organised into 11 organ systems. There are 39 modifiable 

feedback controllers. 

C: Discussion: Systems Modelling Issues 

Anatomical versus physiological models 

One difficulty when creating models arises when processes (and their required variables) are 

assigned to organs. The physiological connections between variables span anatomical locations, as 

often happens for some endocrine glands and in the CNS. Many CNS mechanisms have an organ-

specific regulatory function, and it is arguably better to keep these regulatory mechanisms within 

the main organ. 

Consider for example* vomiting. The vomiting centre in the brain receives input from the gut; it 

performs computations on this input, and returns a volley to the gut if a threshold is reached. Since 

we have a system-specific reflex, surely this would be best implemented in the gut itself? If we need 

to model top-down factors such as psychological suppression, we may be justified in the 

roundabout CNS route. Similarly, if we were interested in modelling anatomical disturbances such 

as autonomic lesions, we would certainly need the nervous model. Another argument for the emesis 

centre to be modelled in the CNS module would be for the modelling of antiemetics: it is only 

sensible for the CNS to judge whether a drug can cross the blood-brain barrier. 

In some situations, we have chosen centralised control, whereas elsewhere it is devolved to the end-

organ. 

 

Separating the plant from the controller 

Physiological models are often based on controllers, where a sensor detects an abnormal value of a 

variable, and sets in motion a response variable to correct it. This is simple when the abnormal 

variable is controlled by a single variable. If a variable depends on the output of several controllers, 

however, there are several possible corrective measures. In this case, it is necessary to consider 

which of the controlling variables is the cause of the abnormal variable. For example*, if a tissue’s 

perfusion is low, is this because blood oxygen is low, or blood pressure is low? Should the 

ventilation rate increase or the heart rate increase? Such difficulties can be solved using locally 

general plus globally specific strategies, for example local vasodilatation increases the tissues own 

perfusion, but decisions on specific correction are deferred to where more information is available 

(i.e. the CNS). It seems that actually, multifactorial causation can lead to a more stable situation. 
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Detecting an abnormal value implies that there is a normal value, a set point towards which a 

variable should gravitate; and that a deviation is an error to be corrected. However, with multiple 

controller inputs, controllers will fight each other unless the set-point itself is seen as different for 

each controller. Each value is then the sum of several controllers’ outputs.  

Incorrect predictions 

It is arguable that we learn a lot more about physiology when a model makes incorrect predictions 

than correct ones. We must find the cause for the incorrect prediction, which requires a process of 

examining the variable values, their pattern of change, and how this relates to the many contributing 

factors in the equations.  

To do this, we use a process somewhat analogous to diagnosis in medicine. In a system of several 

hundred variables, we have a hypothesis (differential diagnosis) as to which variable is causing 

unexpected behaviour, and we measure it. This in turn leads us to hypotheses about this second 

variable’s deviation. As the development cycle continues, we learn what kinds of perturbations in 

which organ systems are apt to lead to a given pattern of physiological mistakes, rather like clinical 

intuition. 

  

The process differs significantly from debugging computer programs, in that we do not fully 

understand the mechanism by which the entire model arrives at its conclusions: there are too many 

variables. We also do not have a full conception of what the equations ought to be, in order to 

produce the desired effect. In programming terms, it is more similar to disassembling and 

debugging a program written by somebody else. The equations supply a framework, but do not 

explain the whole physiological response until they are actually computed and allowed to 

dynamically interact. 

 

Kofranek (2001) suggested an iterative approach to the design process of models: the 

implementation of a formal physiological model is verified by comparing to organisms, and the 

differences are used to alter the model. Unfortunately this gives us little clue as how to alter the 

model in order to achieve the desired result. Therefore we have several tools to assist with the 

process of finding the culprit equations and values when unexpected results are obtained.  

 

� the gain constants for each controller can be modified while the program is running, 

allowing individual controllers to be switched on and off. 

� each organ system’s calculations can be turned on and off independently. When off, the 

organ is simply unable to alter its variables, which remain constant. 
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� variable values can be clamped to a given value (for mutable variables only) 

� a console interface, where commands can be directly typed in while the model is running. 

Calculations can be made, variables can be modified, and procedures can be called 

� scripts of commands can be typed, stored and executed. 

� step-through timing mode, where a single time-step of a given duration can be executed, 

allowing examination of variables before and after a single cycle of calculation. 

 

As an example*, I will choose a scenario that is less amenable to experimental testing. Let us 

consider the instantaneous removal of 500 mL of fluid from the circulation; compare removing 500 

mL of saline solution versus 500 mL of whole blood, ceteris paribus. Now, one version of the 

model oddly predicts that, when saline is removed, blood volume tends to remain low, whereas if 

blood is removed, it rises back to near-normal levels. Why might this be? Is it correct, and if not, 

how can the model be amended?   

 

The immediate differences in the saline condition are: higher blood viscosity, and higher oxygen 

carriage capacity. In the saline condition, it turns out that the rise in viscosity causes high capillary 

pressures. This has two consequences: by Starling’s law, it prevents extracellular fluid from 

replenishing circulating volume, and in the kidney, it reduces triggering of the renin-angiotensin 

system. In the blood condition, the dilution by extracellular fluid causes anaemia, and a consequent 

vasodilatory response, further lowering blood pressure and assisting volume replenishment. 

Only experiment can tell us to what extent this is true, and if it is not, evidently we must decrease 

the effect of haematocrit on viscosity, or possibly add vasodilation in the polycythaemic condition. 

 

Generality-accuracy trade-off 

As a simulation gets more general, the accuracy of its predictions gets less accurate. This is partly 

due to the intrinsic complexity of physiological systems, and means that as more variables are 

added to describe different phenomena, the accuracy of previously modelled variables also needs to 

increase. This calls for hand-coding of many exceptions to rules, and the addition of numerical 

‘tricks’ to produce more coherent results. These ‘hacks’ have been carefully documented, and are 

usually a last resort to match experiments to predictions, particularly in cases where either the exact 

principles underlying the experimental results are unknown, or where these principles are too 

complex, fast or difficult to model.  
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Such situations are more common than might be expected. Here is an example of a hack*: arterial 

PO2 is calculated from the arterial oxygen concentration, which is expressed in mL/L of O2. Each 

cycle in the lungs, the dissociation curve is used to calculate the volume of oxygen absorbed. If one 

litre of fluid is added to the circulation, the haematocrit drops. The PO2 in the added fluid is the 

same as blood, but obviously the concentration is very low. As it turns out, the model does not 

automatically dilute the blood O2 concentration at this point, and therefore the blood becomes 

‘supersaturated’ with oxygen, and it takes several cycles for the PaO2 to fall back to a normal level. 

This situation was corrected by proportionally lowering the arterial and venous O2 concentrations 

when a fluid containing no haemoglobin is added to the blood. This is programmed with loss of 

generality. There is no catering for an accurate pO2 in situations in which blood mixed with fluid is 

transfused in; that would require specification of gas pressures in every added fluid, which could be 

implemented at a later date. More significantly, when the blood volume is altered by other 

physiological processes such as ECF shifts and diuresis, we considered it unessential to recompute 

the oxygen concentration after very small and continuous dilutions. 

Explaining physiology 

It is not always easy to appreciate why physiology is the way it is. In order to understand the 

reasons for the organising systems in a particular way, we need a concept of what would happen if 

things were different. The ‘designed’ quality of carefully balanced physiological systems is only 

noticeable when we consider alternative designs. Modelling is one way of approaching this, with a 

rigour that is impossible through experiment. Using the method of separating the physical from the 

physiological, or the plant from the controller, we find frequently that one is carefully tailored to the 

other, and that the controllers’ parameters are highly sensitive to changes in many plant variables. 

The modelling method leads directly to a separation of the necessary from the contingent.  

 

For example, a naïve implementation of the Starling law of capillaries leads to a description of 

extravasation dependent on blood pressure, plasma protein and extracellular protein. Note that that 

description is unaware of the total volume of extracellular fluid. As a consequence, there are many 

situations where this implementation generates increasing extracellular volumes, as there is no 

direct sensor or controller that can utilise or correct this volume.  

 

The obvious way to correct this is the addition of compliance to the extracellular space (turgor that 

contributes to extracellular pressure). This could be used directly in the Starling calculations. But in 

fact, this pre-empts that the human body has an separate answer – lymphatic drainage. From the 

process of modelling, it becomes immediately clear why such a system must exist. 
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Level of modelling detail 

It is anticipated that despite these difficulties, the level of detail of the model will increase. The 

more detail in the model, the stronger predictions can be made (and as described, the less likely the 

predictions are to be accurate). The hierarchical structure allows large numbers variables to exist 

without impacting on usability. For example*, the breakdown of protein into amino acids could be 

elaborated in great detail: a single value representing total amino acid concentration could be 

fragmented into the concentrations of each one, as long as the total amino acid concentration 

remains available to other modules. This might be useful for modelling rarer deficiency states and 

metabolic disorders, but can be transparent if the individual variables are within a separate class. If 

completeness were desired, a set of amino acid values could even be incorporated into any 

substance containing proteins, using the class template structure.  

 

This raises the distinction between process-wise and functional modelling. There are some variables 

where it is actually better for us to calculate values differently than the body does, often because 

simpler models are easier to understand and can sometimes have greater explanatory power in terms 

of the Akaike information criterion (Akaike 1973). There is a trade-off between accuracy and 

economy of expression. Beneken (1998) notes in a similar vein that models can be functional or 

heuristic. He also lucidly describes the modelling process in terms of analogous reasoning. We 

would add in fact, all modelling, if viewed as analogy, is heuristic in the sense that much 

information is selectively discarded; the power of models lie in the economy of their heuristics. 

 

The issue of which areas of the model need more detail is contentious, and as with any software 

development, priorities must be balanced with the anticipated difficulty of the task. This is 

notoriously unpredictable in modelling, as each change will have unforeseen knock-on effects, often 

in many different situations that cannot all be tested.  

Tuggle (Behav Sci 23:4:271, 1978) suggested using a precise delineation of the set of phenomena to 

be explained, and a meaningful metric of the content of a model. In HOM, our metrics of breadth of 

scope and stability are clearly different from previous models, which often aim for numerical 

precision in a few controlled situations. 

Hanna (Synthese 20:3:308, 1969) discussed the distinction between description, explanation and 

prediction in models in the context of experimental psychology. By considering the full range of 

conditions in which a model is committed to making predictions, he is led to classify these 

conditions into parametric variables (about which predictions are made) and ‘accidental’ variables. 

This is one clear way of setting out which kinds of variation a model intends to represent or ignore. 

He argues first that descriptive models maximise the probability of the observed data. Then by 
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considering likelihood of experimental evidence with or without a model, Hanna arrives at a 

definition of ‘predictive power’ of a model as the information an experimental observation provides 

for discriminating the prior probability of the evidence from the posterior probability. In other 

words, prediction is different from explanation because it endows future observations with 

information.  

 

In this terminology the HOM model achieves its high predictive power by trying to minimise 

information transmitted by data. Unfortunately due to the continuous and temporal nature of the 

model, truly stochastic predictions are difficult to arrive at; we do not have good specifications as to 

how much noise each variable should contain (i.e. to what extent each variable is composed of 

parametric and accidental components). If this information is known, it would be possible to run the 

simulation many times to attain such predictions. 

 

Testing and Improvement 

Any model of sufficient complexity can produce vast numbers of predictions, often more than can 

be empirically tested – this is a consequence of the factorial combination of many interdependent 

variables. However only a fraction of these are useful, unexpected predictions, which deserve 

investigation. Thoroughly testing the model would require expertise from many fields, bringing 

together many facts that seem disparate, but in fact have subtle consequences for each other. We 

anticipate there are many experiments demonstrating phenomena which the model does not exhibit, 

but which it could be altered to exhibit. Miller and Walters (1974) described a method for using one 

common mathematical model as a point of communication between several research teams. Their 

model was a means of coupling together quantitative physiological data from several areas of 

research. With the internet, a common computerised model of this sort is conceivable. 

 

We have therefore designed an internet feedback system whereby potential physiological ‘errors’ 

can be reported, along with a dump of the model’s state. 

 

It might be useful for improving the model if we had a history of the value of each variable for 

every previous cycle of calculation. This would allow analysis of unreplicatable crashes, and 

facilitate step-by-step analysis of all problems. Unfortunately calculations show that such a history 

is currently unfeasible for the standard PC, requiring about 600 kB/sec storage (almost 5 Mbits/sec). 

However, we plan a reasonable alternative, storing just the elapsed body-time at each frame, plus 

the times and details of all additional events. This will permit replay and analysis of any scenario. 
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Expansion in the future could include further chemical metabolic details, endocrine regulatory 

systems including menstrual cycle, details of variation with age including paediatric physiology, 

and importantly more detailed models of disease. 

Conclusion 

The HOM simulation provides two main improvements to previous models: completeness, and 

extensibility. Completeness allows multiple organ systems to interact within a unified framework; 

extensibility offers a graphical environment in which model parameters can be modified and tested 

dynamically. 

Thus the model could be used in multiple contexts: as a physiologist’s modelling tool, a teaching 

aid, and a sandbox for testing hypotheses of disease and treatment. 
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Figure 1: A way of classifying values and equations in a complex physiological model. Variables 

can be constant or variable for the given organism. The equations used can be regarded as physical 

(immutable) laws, physiological (subject to modification in disease and experiments), and 

controllers (feedback systems that maintain homeostasis of physiological processes). Arrows 

represent which types of variable are generally used as input for which type of equation. 
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For the Programmer: 

 Extensible 

 Modular 

 Physiologically debuggable 

 Self-documenting 

For the Student 

 Simple 

 Graphical 

 Dynamic/Interactive 

 Robust 

For the Physiologist 

 Generality for any scenario 

 Completeness – system-wide 

 Tweakable 

 Transparent 

 Intuitive representations 

 Support/Feedback 

 

 

 

Table 1: The main aims of the HOM model. As a continually evolving model, it must be designed 

to facilitate modification and physiological improvement.  

 


